Telegram Group & Telegram Channel
🔴 Как системно оценить качество предобработанных данных перед обучением большой языковой модели (LLM)

Перед тем как запускать дорогостоящий процесс обучения LLM, важно убедиться, что ваши данные чисты, релевантны и структурированы.

Оценка должна включать как количественные, так и качественные метрики.

➡️ Количественные метрики:

😶 Распределение токенов
Проверьте, не доминируют ли специальные токены, мусорные фрагменты или нерелевантные конструкции. Ожидаемые токены (например, ключевые слова доменной области) должны иметь разумную частоту.

😶 Покрытие словаря
Оцените, насколько хорошо охвачены часто встречающиеся слова и сабворды в вашей предметной области. Можно использовать частотный анализ на корпусе.

😶 Статистика по длине документов
Сравните среднюю и медианную длину документов с ожидаемыми значениями. Аномально короткие или длинные тексты могут быть ошибками разметки или дубликатами.

😶 Языковое распределение
В мультиязычном корпусе важно убедиться, что каждый язык представлен в правильной пропорции. Используйте модель определения языка (например, fastText или langid.py).

➡️ Качественные проверки:

😶 Ручная выборка документов
Просмотрите случайные примеры: содержимое должно быть осмысленным, без мусора, персональных данных или несоответствий тематике.

😶 Проверка дубликатов и шаблонов
Автоматически найдите повторяющиеся документы или шаблонные страницы (например, элементы веб-навигации).

😶 Оценка перплексии на тестовой модели
Можно применить небольшую предварительно обученную LLM к данным, чтобы вычислить перплексию. Высокая перплексия может сигнализировать о шуме или нерелевантности.

😶 Автоматическое обнаружение аномалий
Используйте кластеризацию или модели выявления аномалий, чтобы найти подозрительные группы документов.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/996
Create:
Last Update:

🔴 Как системно оценить качество предобработанных данных перед обучением большой языковой модели (LLM)

Перед тем как запускать дорогостоящий процесс обучения LLM, важно убедиться, что ваши данные чисты, релевантны и структурированы.

Оценка должна включать как количественные, так и качественные метрики.

➡️ Количественные метрики:

😶 Распределение токенов
Проверьте, не доминируют ли специальные токены, мусорные фрагменты или нерелевантные конструкции. Ожидаемые токены (например, ключевые слова доменной области) должны иметь разумную частоту.

😶 Покрытие словаря
Оцените, насколько хорошо охвачены часто встречающиеся слова и сабворды в вашей предметной области. Можно использовать частотный анализ на корпусе.

😶 Статистика по длине документов
Сравните среднюю и медианную длину документов с ожидаемыми значениями. Аномально короткие или длинные тексты могут быть ошибками разметки или дубликатами.

😶 Языковое распределение
В мультиязычном корпусе важно убедиться, что каждый язык представлен в правильной пропорции. Используйте модель определения языка (например, fastText или langid.py).

➡️ Качественные проверки:

😶 Ручная выборка документов
Просмотрите случайные примеры: содержимое должно быть осмысленным, без мусора, персональных данных или несоответствий тематике.

😶 Проверка дубликатов и шаблонов
Автоматически найдите повторяющиеся документы или шаблонные страницы (например, элементы веб-навигации).

😶 Оценка перплексии на тестовой модели
Можно применить небольшую предварительно обученную LLM к данным, чтобы вычислить перплексию. Высокая перплексия может сигнализировать о шуме или нерелевантности.

😶 Автоматическое обнаружение аномалий
Используйте кластеризацию или модели выявления аномалий, чтобы найти подозрительные группы документов.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/996

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Библиотека собеса по Data Science | вопросы с собеседований from ru


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA